November 30th 2004

UC Berkeley's Demand Response (DR) Enabling Technology Development (ETD) Project

Paul Wright (Materials/Manufacturing)

In collaboration with the multidisciplinary team of:

Edward Arens & Charlie Huizenga (Buildings), David Auslander (Controls), David Culler (O/S), Jan Rabaey (Radios), Richard White (Sensors)

& students (many thanks to them!) at UC Berkeley

Multidisciplinary Team

Low Power Radios

Mesh Networking

Energy Scavenging

Sensors

Buildings

Controls

Manufacturing

Prototypes not Products!

- **♦** Goals include: Reduce blackouts at peak usage times
- Enabling Technology Development: Key to research approach
 - Meters, thermostats, temperature-nodes: In ad hoc self organizing wireless networks (low power radios, energy scavenging, TinyOS)
 - "Cheaper better faster" for the 10x10x10 mission of DR-ETD program
 - Residential focus in CA and affordable for even the smallest homes
- One working scenario/vision to demonstrate new technologies
 - Receives price signals every 15 mins (emergency signals treated immediately)
 - Users provide preferences to their thermostat and major appliances, thru easy to use GUIs, acting as the users proxy
 - Eventually -- self-learning systems
 - Time stamped usage sent back once a day
 -- say at 3am -- Or in an emergency
 the response would be immediate

Cal ISO Daily Peak Loads

January 1, 2000 - December 31, 2000

Vision: Integrate these four Enabling Technologies for a 10x10x10 mission

◆ 1. Controls & applications on a prototype of New Thermostat

• Easy-to-use "thermostat" that can act as an automatic proxy to optimize energy savings versus comfort under varying energy price conditions.

◆ 2. Voltage/Current Sensors and relation to New Meter

• Low-cost wireless, passive and non-intrusive current and voltage sensing for application to the next generation meter and other devices.

3. Pico Radio & TinyOS for networking of devices

• Low-power and low-cost radio platforms, supported by appropriate operating systems, for ad hoc sensor and actuator network applications.

4. Energy Scavenging (important for Temp Nodes)

• Infinite life power source that scavenges energy from the environment. Possible energy sources include solar, vibration, air flow, and hybrid.

Topic 1: Controls/Thermostat

Challenges:

- Interface that's easy to understand and intuitive -- for many sectors of society.
- Learning algorithms that will optimize energy savings and comfort with timevarying energy prices (e.g. pre-cooling algorithms)
- Display to the user the expected monthly bill ("shock effect of monthly credit-card-bill")
- Control strategies for a house that can react to the possibility of low in-house network quality or complete network failure.

Wireless Controlled Outlets

Wireless node inside the box controls latching relay, turning lamp at right on or off.

Or, "Remote control" can communicate with node.

Demo in Full-scale Testbed

Topic 2: Sensor Measurements by applicable to New Meter & other devices

Needs

- AC current sensing (see next slide)
- AC voltage sensing

Specifications

- Wireless data transmission of home-usage
- No external power source required
- Proximity coupling for inexpensive installation

MEMS current sensor (prototype)

AC current sets up time-varying magnetic field whose gradient exerts force on high-permeability magnetic material at end of MEMS cantilever resonator, which vibrates and generates piezoelectric output voltage

Electric current (magnetic field) measurement techniques:

- Inductor
- Hall effect
- GMR sensor
- Magnetic force on MEMS sensor

Topic 3: Radios and TinyOS

From 10's of cm³ and 10's to 100's of mW

To 10's of mm³ & 10's of μ W

Battery

TinyOS on Nodes (called 'Motes')Pier

CPU	
Bus Speed	8 MHz
RAM	2 Kb
Program Space	60 Kb
External Flash	512 Kb
Serial Communications	DIO,SPI,I2C,UAR T
Current (active w/ radio on)	19 mA
Current (sleep)	2.4 μΑ
Voltage	2.0-3.6V
Radio	
Frequency	2400-2483 MHz
Data rate	250 kbps
Output Power	-25 to 0 dBm
Antenna	Microstrip
	Inverted-F
Humidity Sensor	
Humidity Accuracy	3.5% RH
Temperature Accuracy	0.5 °C
Electromechanical	

2xAA, 2/3A

Ultra Low Power Node {called 'Telos'}

16-bit microcontroller has a sub 1mA sleep state and can rapidly wakeup from sleep in under 6ms.

Telos operates down to 1.8V to extract as much energy as possible from the battery source.

TinyOS supports mesh-networked devices

Testbed topology (not limiting!)

Topic 4: Energy Scavenging* Possibilities: "No replaceable batteries" on nodes

- Solar/Ambient Light
- Vibrations
- Air Flow
- **◆ Temperature Gradients**
- Pressure Gradients
- Human Power

Sources

Vibration-Based-Scavenging:

Impact of 'MicroPower' on CA

'GigaPower' Challenges

- HVAC ducts
- Raised Floors
- Motors
- Large windows
- •Mount under wooden staircase

◆Three Rules for Design

 $P \sim M$

 $P \sim A^2$

•P $\sim 1/\omega$

◆PZT-shims with W-mass

•Early work $\sim 800 \,\mu\text{W/cm}^3$ at 5 m/s² (on a clothes dryer!)

◆Recent successes

- •TinyTemp Node on stairs
 - MEMS piezo bender

TinyTemp/TinyOS Node

- Stair-Case Vibrations from Running Up and Down Stairs
- Piezoelectric: PZT
- Tungsten Alloy Mass: 52 g
- Beam Dimensions:
- ◆ 1.25" x 0.5" x 0.02"
- Resonant Frequency: 26.8 Hz
- Power Output: 450 μW

Schematic vs. Actual Device

End-on view of one MEMS cantilever

View from above of MEMS cantilevers...

Achieving 10x10x10

◆ Early thinking about integrated device ~1 cm³

- 3-D wiring
- 4 sides with solar panels
- 2 sides with sensors
- On-board recharg. battery
- On-board piezo electric generation

Achieving 10x10x10

- One package
- One bus
- Test bed for integration
- Wiring problem still avoided

MEMS Piezo Bender

